
An Improved Greedy Algorithm for Subset Selection
in Linear Estimation

Shamak Dutta, Nils Wilde, and Stephen L. Smith

Abstract— In this paper, we consider a subset selection prob-
lem in a spatial field where we seek to find a set of k locations
whose observations provide the best estimate of the field value
at a finite set of prediction locations. The measurements can be
taken at any location in the continuous field, and the covariance
between the field values at different points is given by the widely
used squared exponential covariance function. One approach
for observation selection is to perform a grid discretization
of the space and obtain an approximate solution using the
greedy algorithm. The solution quality improves with a finer
grid resolution but at the cost of increased computation. We
propose a method to reduce the computational complexity, or
conversely to increase solution quality, of the greedy algorithm
by considering a search space consisting only of prediction
locations and centroids of cliques formed by the prediction
locations. We demonstrate the effectiveness of our proposed
approach in simulation, both in terms of solution quality and
runtime.

I. INTRODUCTION

An important problem in engineering applications is decid-
ing the subset of measurements that are the most useful in the
estimation of an unknown quantity of interest. For example,
in agriculture, it is important to estimate the nutrient quality
of a field using soil samples. This helps guide fertilizer usage
to replenish lost nutrients, which subsequently maximizes
crop yield. However, it is impractical to sample the soil
at each location in large agricultural fields. The goal is to
determine where to sample the soil, such that the nutrient
quality at a large set of prediction locations can be estimated
accurately. An example of the soil pH variability in a field
with a set of prediction locations is shown in Figure 1. This
type of subset selection problem shows up in domains such
as sensor placement/active sampling in spatial statistics [1],
[2], [3], [4], [5], feature selection in machine learning [6],
[7], informative path planning in robotics [8], [9], [10], [11],
among others. The challenge is similar: choose the subset of
attributes that best estimates the quantity of interest.

The Bayesian approach is to model the quantities as
random variables. The estimates of prediction variables are
obtained by linear estimators and the objective is to minimize
the mean squared estimation error. A benefit of this approach
is that prior statistical knowledge of the quantities can be
incorporated into the estimation procedure. In addition, the
mean squared error resulting from a linear estimator is
independent of the observations. Thus, deciding the subset

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada {stephen.smith,
nwilde, shamak.dutta}@uwaterloo.ca. N. Wilde is also
with the Cognitive Robotics Department, Delft University of Technology,
Netherlands.

Fig. 1. An example of the pH variability in an agricultural field. The
circles are the prediction locations where accurate estimates are desired.
Agricultural fields can be large and one can only take a fixed number of
soil samples to best estimate the pH variability at the prediction locations.

that minimizes the mean squared error can be done a priori.
With a finite observation set, a popular approach is to use the
greedy algorithm [6], [12]. At each step, the variable maxi-
mizing the marginal gain is selected. Continuous observation
sets, such as agricultural fields, can be made finite by a grid
discretization, which can be used by the greedy algorithm,
which we refer to as GRID-GREEDY. The solution quality
improves with a finer grid but at an increased computational
cost. The objective of this paper is to remove the dependence
on the grid discretization while obtaining good solution
quality. Our proposed method, CENTROID-GREEDY, restricts
the search to the set of prediction locations and the centroids
of the cliques formed by the prediction locations. This
is motivated by our analysis in one dimension where we
identify a critical distance between points that characterizes
the optimal measurement location. In our experiments, we
show CENTROID-GREEDY achieves better solutions when
given the same computational resources as GRID-GREEDY
and finds solutions of similar quality more efficiently.

Related Work: Similar to our work, [11] studies the
problem of minimizing the number of measurements taken
while keeping the estimation error under a threshold in a
spatial field modeled as a Gaussian Process with a squared
exponential covariance function. In contrast, we minimize
the estimation error over a finite set of prediction variables
using k observation variables. In addition, the variables are
not restricted to be Gaussian in our problem setup.

A seminal paper in sensor placement for Gaussian Pro-
cesses is [1], which considers maximizing the mutual infor-
mation between the sensed and unsensed locations. Using
the submodularity of mutual information, the authors use a



greedy algorithm to obtain a constant factor approximation
guarantee. However, to the best of our knowledge, there is
no direct relation between the mutual information and the
resulting estimation error. Our work considers the estimation
error directly. In [13], the author studies the problem of
estimation using kriged Kalman filtering in a spatio-temporal
field. In our work, we consider spatial variation only and
share the kriging aspect with the work in [13].

Another related problem is the subset selection problem
in linear regression, where one has to select a subset of
k random variables to yield the best prediction of another
random variable of interest. The authors in [14] study a
special case where the random variables can be embedded
onto the real line with covariances that decay with the
distance. They provide an algorithm to compute the optimal
solution using dynamic programming. However, their work
assumes a finite set of measurement variables, which must
be embedded onto the real line. There is no known exten-
sion of this idea to an infinite set of observation variables
embedded in higher dimensional spaces. In this paper, we
consider random variables indexed on an infinite subset
of a d-dimensional Euclidean space with the widely used
squared exponential covariance function [15]. In [16], the
authors introduce the concept of approximate submodularity
to provide guarantees for the greedy algorithm. The setup is
the same as in [14] with a finite set of observation variables.
Thus, the performance guarantees are not directly applicable.

Contributions: The contributions of this work are twofold.
First, we formulate a problem of budget constrained ob-
servation selection from an infinite set to best estimate
a finite set of prediction variables. Second, we propose
CENTROID-GREEDY, a greedy algorithm that uses a ground
set consisting of the prediction locations and the centroids of
cliques formed by the prediction locations. This reduces the
dependence of GRID-GREEDY on the grid discretization of
the continuous field. In simulations, we demonstrate the im-
proved solution quality and run time of CENTROID-GREEDY
in comparison to GRID-GREEDY. Due to space limitations,
proofs are omitted and can be found in the preprint [17].

II. PRELIMINARIES

Many combinatorial problems involve maximizing a sub-
modular set function whose definition follows.

Definition 1 (Submodular Set Function). Given a finite set
V , the set function f : 2V → R is submodular if for all sets
A ⊆ B ⊆ V and x ∈ V \B, the diminishing returns property
is satisfied:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). (1)

The greedy algorithm for maximizing set functions subject
to a cardinality constraint is described as follows.

Definition 2 (Greedy Algorithm). The greedy algorithm
begins with the empty set S0 = ∅ and repeatedly adds the
element x ∈ V that maximizes the marginal gain until the
cardinality constraint is met. That is, for i ≥ 1,

Si+1 = Si ∪ {arg max
x∈V

f(Si ∪ {x})− f(Si)}. (2)

The cardinality constrained maximization of a certain class
of submodular functions can be efficiently approximated by
a greedy algorithm whose solution is within a multiplicative
factor of 1− 1/e ≈ 0.63 of the optimal [18].

Let X1, . . . , Xn, Y be square integrable, zero mean ran-
dom variables, and b := (Cov(X1, Y ), . . . ,Cov(Xn, Y ))

T ,
X := (X1, . . . , Xn)

T , and let C be a n × n matrix whose
(i, j)th element is Cov(Xi, Xj).

Definition 3 (Linear Least Squares Estimator). Given
X1, . . . , Xn, the optimal linear estimator of Y is:

Ŷ := bTC−1X. (3)

Definition 4 (Mean Squared Estimation Error). Given
X1, . . . , Xn, the linear least squares estimator of Y results
in a mean squared estimation error of

E
[(
Y − Ŷ

)2
]

:= Var(Y )− bTC−1b. (4)

III. PROBLEM FORMULATION

Let D ⊂ Rd represent the environment and let σ0 ∈ R>0

be a positive real number. For any location x ∈ D, let Z(x)
be a random variable with zero mean and variance σ2

0 . We
consider a convex set of measurement locations Θ ⊂ D and
a finite set of prediction locations Ω ⊂ Θ. Given a positive
integer k ∈ Z+, our goal is to minimize the mean-squared
error of the linear estimation of the prediction variables
{Z(x) : x ∈ Ω} using only k measurement variables.

Remark. Note that when |Ω| < k, measurements at all
prediction locations will yield low estimation error. The
problem is only interesting when |Ω| > k.

We define φSE : R≥0 → R>0 to be the squared exponential
covariance function with known parameters σ0 and L ∈ R>0:

φSE(x) = σ2
0e
− x2

2L2 , (5)

The parameters can be learned from a pilot deployment or
expert knowledge and is a standard assumption in sensor
placement algorithms [1].

For any x, y ∈ D, we assume the covariance of the random
variables Z(x), Z(y) is given by

Cov(Z(x), Z(y)) = E[Z(x)Z(y)] = φSE(‖x− y‖). (6)

Let i be a positive integer. For any x ∈ D, let Yi(x) be
the ith noisy measurement of Z(x) and let the associated
noise be εi(x). The noise is assumed to be a zero mean
random variable with variance σ2 > 0. In addition, the noise
is uncorrelated across measurements and locations i.e. for
any x, y ∈ D and for any positive integers m,n ∈ Z+,
Cov(εm(x), εn(y)) = 0. The measurement is

Yi(x) = Z(x) + εi(x). (7)

In order to reduce notational clutter, for any x ∈ D,
we drop the subscript i from the measurement variable
Yi(x) and the associated noise εi(x). If there are multiple
measurements at the same location, the associated noise
terms are uncorrelated. In addition, any measurement at the



same location x ∈ D (even if there are multiple) will be
denoted by Y (x). Now, the measurement equation is

Y (x) = Z(x) + ε(x). (8)

We wish to minimize the total mean-squared error, which
gives us the following constrained optimization problem:

min
S⊂Θ,|S|≤k

∑
x∈Ω

E
[(
Z(x)− Ẑ(x, S)

)2
]
, (9)

where Ẑ(x, S) is the linear estimator of Z(x) given the
variables in S. We now rewrite the problem as follows.
Denote the elements of a set S by {x1, . . . , xk}. The linear
estimator Ẑ(x, S) is given by Definition 3:

Ẑ(x, S) := bx(S)TC(S)−1Y S (10)

where

bx(S) := [φSE(‖x− x1‖), . . . , φSE(‖x− xk‖)] ∈ Rk

Y S := [Y (x1), . . . , Y (xk)] ∈ Rk

C(S) := E
[
ZSZ

T
S

]
+ σ2Ik ∈ Rk×k

=

 φSE(0) . . . φSE(‖x1 − xk‖)
...

. . .
...

φSE(‖xk − x1‖) . . . φSE(0)


+ σ2Ik.

(11)

Using Definition 4, we can rewrite Equation (9) as

min
S⊂Θ,|S|≤k

∑
x∈Ω

φSE(0)− bx(S)TC(S)−1bx(S). (12)

Since φSE(0) = σ2
0 is a constant, we can consider the

maximization version of the problem. Define

fx(S) := bx(S)TC(S)−1bx(S)

f(S) :=
∑
x∈Ω

fx(S), (13)

where bx(S) and C(S) are defined in (11). The function
fx(S) is also known as the squared multiple correlation [6],
[14] or the variance reduction [19].

In this paper, we seek to find the measurement set that
maximizes the total variance reduction.

Problem 1. Given measurement locations Θ, prediction
locations Ω, and a budget k > 0, find a measurement set
S ⊂ Θ of size k that maximizes the total variance reduction:

max
S⊂Θ,|S|≤k

f(S). (14)

IV. PROBLEM STRUCTURE

In this section we provide preliminary results that guide
the design of our algorithm, presented in the next section.

A. Non-submodularity

Problem 1 resembles a sensor placement problem where
one is interested in a subset of locations to deploy sensors
to maximize the information gained about the environment.
Metrics related to the information gained such as coverage
and mutual information are known to be submodular func-
tions which can be approximately solved efficiently with a
guarantee. However, for Problem 1, we provide an example
to show the variance reduction objective is not submodular.

Example 1. Consider the following environment setup
where the points lie on an interval on the real line.

D ⊂ R,Ω = {0},Θ = [0, 2], σ = 1, σ0 = 1, L = 1,

A = {0.6784}, B = {0.6784, 1.4869}, x = 0.6892.
(15)

Now, f(A∪{x})−f(A) = 0.1021 and f(B∪{x})−f(B) =
0.1025, which shows the violation.

B. Two Prediction Locations with One Sample

In this subsection, we discuss properties of the problem in
1-D, i.e., the random variables are associated with locations
on the real line. This restriction provides valuable insight
into the problem and motivates our proposed algorithm.

Suppose the set of prediction locations contains two points
i.e. Ω = {y1, y2} ⊂ [a, b], with y1 < y2. After some
simplification, the optimization problem in (14) is

max
x∈[a,b]

1

σ2
0 + σ2

(
φ2

SE(‖x− y1‖) + φ2
SE(‖x− y2‖)

)
= max

x∈[a,b]

σ4
0

σ2
0 + σ2

(
e−

1
L2 ‖x−y1‖2 + e−

1
L2 ‖x−y2‖2

)
.

(16)

The solution depends on the relationship between the dis-
tance between the two prediction locations and L, the param-
eter of the squared exponential covariance function defined
in (5). This is formalized in the following proposition. The
proof is omitted and can be found in [17].

Proposition 1. Let D ⊂ R, Ω = {y1, y2} ⊂ D,Θ = D,
t = 1, and the midpoint x∗ = y1+y2

2 . Denote the optimal
solution to (16) by OPT. Then,

OPT = x∗ ⇐⇒ ‖y2 − y1‖ ≤
√

2L. (17)

When the points are separated by a distance greater than√
2L, Proposition 1 guarantees the suboptimality of the

midpoint. In this case, the prediction locations are reasonable
solutions whose performance guarantee is given by the
following proposition (see [17] for the proof).

Proposition 2. Given D ⊂ R, Ω = {y1, y2} ⊂ D,Θ = D,
and k = 1, when ‖y2 − y1‖ >

√
2L, the point x = y1 is an

approximate maximizer to (16) with a guarantee

f({y1})
f({x∗})

≥ 0.62, (18)

where x∗ is the optimal measurement location.

Propositions 1 and 2 motivate our algorithm design. For
two prediction points and one sample in 1D, either the mid-
point is optimal or either prediction point is an approximate



solution. This suggests the following idea: restrict the search
of the greedy algorithm to the prediction locations and the
centroids of the cliques formed by the prediction locations.

V. ALGORITHM

In this section, we discuss GRID-GREEDY and its limi-
tations, our proposed algorithm CENTROID-GREEDY based
on computing centroids of maximal cliques, and provide a
reformulation of computing the marginal gains that speeds
up the implementation of both greedy algorithms in practice.

A. GRID-GREEDY

The greedy algorithm is popular for subset selection in
regression where it is also known as Forward Selection
[14], [6], [12]. In this section, we discuss how the greedy
algorithm can be used for infinite observation sets. For
Problem 1, starting with S0 = ∅, the first step of the
algorithm computes the maximizer to

S1 = arg max
x∈Θ

f({x})

= arg max
x∈Θ

1

σ2 + σ2
0

∑
y∈Ω

φ2
SE(‖x− y‖)

= arg max
x∈Θ

σ4
0

σ2 + σ2
0

∑
y∈Ω

e−
1

L2 ‖x−y‖
2

.

(19)

This function is non-concave and in general, it is difficult
to find the global maximum. To tackle this non-concave
maximization problem, the set of measurement locations Θ
can be uniformly discretized to form a finite set of points
Θ̄ ⊂ Θ. The point x ∈ Θ̄ with the maximum function value
is returned as an approximate solution. This is known as the
Uniform Grid method [20]. Each step of the greedy algorithm
can be approximately solved using this method. The grid
discretization is determined by a positive integer parameter
ρ ≥ 1 which tiles each dimension with ρ points to form Θ̄
of size ρd. We refer to this method as GRID-GREEDY. The
time complexity of GRID-GREEDY is given in the following
proposition (see [17] for the proof).

Proposition 3. Given a positive integer ρ ≥ 1 and a grid
discretization of size ρd, GRID-GREEDY finds a solution to
Problem 1 in time O(ρdk3 max{k, |Ω|}).

The dependence of the runtime on ρd is concerning. To get
good quality solutions using the greedy algorithm, ρ needs to
be sufficiently large to achieve a good grid resolution. In this
paper, we aim to find good quality solutions using the greedy
algorithm in time independent of the grid discretization.

B. CENTROID-GREEDY

We now present our algorithm CENTROID-GREEDY
which involves two parts. First, we find the centroids of max-
imal cliques in a graph with nodes as prediction locations.
Second, we use the set of centroids and prediction locations
as a ground set for the greedy algorithm for maximizing set
functions (Definition 2) to solve Problem 1.

Algorithm 1: MAXIMALCLIQUECENTROIDS

Input: Prediction locations Ω
Output: Clique Centroids X ⊂ Θ

1 G = (V,E)← CONSTRUCTGRAPH(Ω)
2 C ← MAXIMALCLIQUES(G)
3 Initialize X = ∅
4 for each clique M∈ C do
5 X ← X ∪ {CENTROID(M)}
6 return X

prediction locations

Fig. 2. The objective function f(S) when the budget k = 1 for a given
set of prediction locations in two dimensions. Two prediction locations are
connected by an edge if their distance is less than or equal to

√
2L.

Finding Clique Centroids: The steps to compute clique
centroids is given in Algorithm 1. The first step (Line 1,
CONSTRUCTGRAPH) constructs a graph G = (V,E) with
vertices as prediction locations. Two vertices are connected
with an edge if the corresponding prediction locations are
within a distance

√
2L. An example of a constructed graph

for a two dimensional problem is shown in Figure 2. The next
step is to compute the clique centroids. Ideally, we would like
to find maximum cliques in the graph. Unfortunately, finding
maximum cliques is NP-Hard [21]. We limit ourselves to
finding maximal cliques from each vertex in the graph since
this can be done efficiently with a greedy algorithm: for
each vertex v ∈ V in the graph, grow the clique one vertex
at a time by looping through the remaining vertices, add it
to the clique if it is adjacent to every vertex in the clique
and discard it otherwise (Line 2, MAXIMALCLIQUES). Note,
this method does not yield all maximal cliques like the
Bron-Kerbosch algorithm [22], which has an exponential
time complexity in the worst case. Once we have the set
of maximal cliques, the final step is to loop through the
cliques and compute the centroid of the prediction locations
associated with the clique (Line 5).

CENTROID-GREEDY: Proposition 3 ensures that the pre-
diction locations are reasonable approximate solutions when
the prediction locations are separated by a distance greater
than

√
2L. Instead of GRID-GREEDY which has a runtime



of O(ρdk3 max{k, |Ω|}) for Problem 1 (see Proposition 3),
we remove the dependence on ρd i.e. the grid discretization,
by limiting the search to the set of centroids (computed in
Algorithm 1) and the set of prediction locations: X ∪ Ω.
The set of centroids is a feasible set for Problem 1 since
Ω ⊂ Θ and Θ is a convex set i.e. the set of measure-
ment locations Θ contains the centroids of any subset of
prediction locations. Since the number of maximal cliques
computed by Algorithm 1 is bounded above by the number
of prediction locations, the runtime of CENTROID-GREEDY
is O(|Ω|k3 max{k, |Ω|}). This is an improvement over the
runtime O(ρdk3 max{k, |Ω|}) of GRID-GREEDY, as long as
|X ∪Ω| < ρd, which we will show in Section VI, is required
for GRID-GREEDY to obtain good solutions for large fields.
The steps for CENTROID-GREEDY are given in Algorithm 2.

Algorithm 2: CENTROID-GREEDY

Input: Continuous Field: Θ, Prediction Locations: Ω,
budget k > 0

Output: Measurement Set: S ⊂ Θ, |S| = k
1 V = MAXIMALCLIQUECENTROIDS(Ω)
2 Initialize S0 = ∅
3 for i = 1 to k do
4 Si = Si−1 ∪ {arg max

x∈V
f(Si−1 ∪ {x})− f(Si−1)}

5 return Sk

C. Implementation of the Greedy Algorithm

Each step of the greedy algorithm requires computing
the maximizer of the marginal gain f(Si ∪ {x}) − f(Si)
over all feasible x. Computing f(S) in the form in (13)
is time consuming and is not amenable to vectorization in
NumPy [23] directly. Using Proposition 4, the marginal can
be rewritten in a form that can be vectorized, and in practice
is much faster to compute. For example, computing the
solution for 500 prediction points, ground set size of 400,
and a budget of 25 takes ≈ 0.5 seconds with vectorization
and ≈ 14 seconds with the non-vectorized version.

Proposition 4. The marginal improvement of f(S) when
adding an element x to a set A is given by:

f(A ∪ {x})− f(A) = Tx
∑
y∈Ω

(
Rx,y (A)− φ2

SE(x− y)
)2
,

(20)

where Tx =
(
σ2

0 + σ2 − bTx (A)C (A)
−1

bx (A)
)−1

and

Rx,y (A) = bx(A)TC (A)
−1

by (A).

The proof is omitted and can be found in [17].

VI. EVALUATION

In this section, we provide evidence of two advan-
tages of CENTROID-GREEDY over GRID-GREEDY. First,
CENTROID-GREEDY obtains higher quality solutions on
problem instances where the run time of both algorithms is
comparable. Second, on instances where the solution quality

small medium large
environment type

0

500

1000

1500

2000

2500

3000

m
ea

n 
sq

ua
re

d 
er

ro
r

sparse regime

small medium large
environment type

0

5000

10000

15000

20000

25000

30000

35000

40000

m
ea

n 
sq

ua
re

d 
er

ro
r

moderate regime

small medium large
environment type

0

20000

40000

60000

80000

100000

m
ea

n 
sq

ua
re

d 
er

ro
r

dense regime
greedy improved greedy

Fig. 3. Comparison of the solution quality when runtimes are kept equal.
CENTROID-GREEDY obtains equal or better solutions GRID-GREEDY in all
environment types and regime of prediction points.

is comparable, CENTROID-GREEDY finds the solution faster
than GRID-GREEDY. The solution quality is measured by
the mean squared error (Equation 9) and the run time is
measured in seconds.

Experimental Setup: We follow the setup in [11] where a
Gaussian Process was fit to a real world dataset of organic
matter measurements in an agricultural field [24]. Note that
we do not require the actual data, only the parameters of
the squared exponential covariance function and the variance
of the measurement noise. Specifically, the authors [11]
computed L = 8.33 meters, σ0 = 12.87, and σ2 = 0.0361.
The interpretation of L is the distance one has to travel
before the underlying function value changes [15]. Since the
covariance function is a squared exponential, only the relative
distances between points matter, not the absolute positions.
This enables us to consider different environment sizes:

1) Dsmall :=
{

(x, y) ∈ R2 : 0 ≤ x ≤ 40, 0 ≤ y ≤ 40
}

,
Area = 1600 square meters.

2) Dmed :=
{

(x, y) ∈ R2 : 0 ≤ x ≤ 120, 0 ≤ y ≤ 120
}

,
Area = 14, 400 square meters.

3) Dlarge :=
{

(x, y) ∈ R2 : 0 ≤ x ≤ 600, 0 ≤ y ≤ 600
}

,
Area = 360, 000 square meters.

We also consider three regimes for the number of prediction
points: sparse (20 points, budget 8), moderate (300 points,
budget 75), and dense (1000 points, budget 200). The results
in the following sections are based on 10 randomly generated
problem instances for each combination of environment type
(small, medium, large) and prediction point regime (sparse,
moderate, dense). The experiments are implemented using
NumPy [23] on an AMD Ryzen 7 2700 processor.

A. Solution Quality
In the first set of experiments, we aim to answer the

following question: given the same computational resources,
which algorithm provides a better solution? To ensure equal
computational resources, for a N×N grid discretization, we
set N =

⌈√
2|Ω|

⌉
. Since the number of maximal cliques

computed in Algorithm 1 is at most |Ω|, this ensures the
runtimes are comparable. The grids selected are: 7×7 (sparse
regime), 25×25 (moderate regime), 45×45 (dense regime).

The results are shown in Figure 3. In the sparse regime
(left plot) CENTROID-GREEDY outperforms GRID-GREEDY



small medium large
environment type

0.000

0.001

0.002

0.003

0.004

0.005

ru
n 

tim
e 

(s
ec

on
ds

)
sparse regime

small medium large
environment type

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ru
n 

tim
e 

(s
ec

on
ds

)

moderate regime

small medium large
environment type

0

20

40

60

80

100

ru
n 

tim
e 

(s
ec

on
ds

)

dense regime
greedy improved greedy

Fig. 4. Comparison of the run time while keeping the solution quality
approximately the same. GRID-GREEDY practically takes at least as much
time as CENTROID-GREEDY to find solutions of similar quality.

on average in all environment types. The difference in
performance is the highest in large environments since
the grid resolution is not sufficient to cover the space. In
the moderate regime (center plot) and dense regime (right
plot), the solution quality of both algorithms is similar in
small and medium sized environments. However, for large
environments, CENTROID-GREEDY obtains better solutions.
The difference in performance reduces as we move from
the sparse to dense regime. This is because the high density
of prediction points increases the chance of close proximity
with grid points, even in the case of low resolution grids.

B. Run Time

In the second set of experiments, we explore how much
longer it takes GRID-GREEDY to achieve similar solution
quality as CENTROID-GREEDY. For each problem instance,
if CENTROID-GREEDY obtains a higher objective value than
GRID-GREEDY we repeatedly increase the grid resolution
until GRID-GREEDY attains the a similar objective value.
We compare the time taken by GRID-GREEDY on the final
grid resolution to the time taken by CENTROID-GREEDY.

The results are shown in Figure 4. In the sparse regime
(left plot) and moderate regime (center plot), the run times
are similar. In the moderate regime, the number of prediction
points is a bit higher than the number of grid points and
thus the runtime of CENTROID-GREEDY is slightly higher.
In the dense regime, GRID-GREEDY takes approximately
2.5 times (small environments), 4 times (medium size en-
vironments), and 5 times (large environments) as long as
CENTROID-GREEDY to attain a similar objective value.
The runtime of GRID-GREEDY increases with the size of
the environment, while the runtime of CENTROID-GREEDY
remains fairly constant. Note, agricultural fields can be an
order of magnitude larger than those considered in this
experiment [25] and we expect larger reductions in run time
for these agricultural fields in practice.

VII. CONCLUSIONS

We discussed the problem of selecting a k-subset that
yields the best linear estimate at a set of prediction locations
in a continuous spatial field. We proposed an approach that
restricting the search of the greedy algorithm to the set of

prediction locations and the centroids of their cliques. This
was motivated by identifying a critical distance between two
prediction points which characterized the optimal solution
in 1D. In simulations, we showed the effectiveness of the
proposed approach in terms of solution quality and runtime.

REFERENCES

[1] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical
studies.” Journal of Machine Learning Research, vol. 9, no. 2, 2008.

[2] N. Ramakrishnan et al., “Gaussian processes for active data mining of
spatial aggregates,” in SIAM International Conference on Data Mining,
2005, pp. 427–438.

[3] J. Le Ny and G. J. Pappas, “On trajectory optimization for active
sensing in gaussian process models,” in IEEE Conference on Decision
and Control (CDC), 2009, pp. 6286–6292.

[4] R. Marchant and F. Ramos, “Bayesian optimisation for intelligent
environmental monitoring,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 2242–2249.

[5] S. Yang, N. Wei, S. Jeon, R. Bencatel, and A. Girard, “Real-time
optimal path planning and wind estimation using gaussian process
regression for precision airdrop,” in American control conference
(ACC), 2017, pp. 2582–2587.

[6] A. Miller, Subset selection in regression. CRC Press, 2002.
[7] I. Guyon et al., “An introduction to variable and feature selection,”

Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.
[8] J. Binney and G. S. Sukhatme, “Branch and bound for informative

path planning,” in IEEE international Conference on Robotics and
Automation, 2012, pp. 2147–2154.

[9] J. Binney, A. Krause, and G. S. Sukhatme, “Informative path plan-
ning for an autonomous underwater vehicle,” in IEEE International
Conference on Robotics and Automation, 2010, pp. 4791–4796.

[10] ——, “Optimizing waypoints for monitoring spatiotemporal phenom-
ena,” The International Journal of Robotics Research, vol. 32, no. 8,
pp. 873–888, 2013.

[11] V. Suryan and P. Tokekar, “Learning a spatial field in minimum time
with a team of robots,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1562–1576, 2020.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[13] J. Cortés, “Distributed kriged kalman filter for spatial estimation,”
IEEE Trans. on Automatic Control, vol. 54, pp. 2816–2827, 2009.

[14] A. Das and D. Kempe, “Algorithms for subset selection in linear
regression,” in Proceedings of the fortieth annual ACM symposium
on Theory of computing, 2008, pp. 45–54.

[15] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning. Springer, 2003, pp. 63–71.

[16] A. Das and D. Kempe, “Approximate submodularity and its applica-
tions: Subset selection, sparse approximation and dictionary selection,”
The Journal of Machine Learning Research, vol. 19, pp. 74–107, 2018.

[17] S. Dutta, N. Wilde, and S. L. Smith, “An improved greedy algorithm
for subset selection in linear estimation,” 2022, arXiv:2203.16070
[math.OC].

[18] G. L. Nemhauser et al., “An analysis of approximations for maximiz-
ing submodular set functions—i,” Mathematical programming, vol. 14,
no. 1, pp. 265–294, 1978.

[19] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta, “Robust
submodular observation selection.” Journal of Machine Learning Re-
search, vol. 9, no. 12, 2008.

[20] Y. Nesterov, Lectures on Convex Optimization. Springer, 2018.
[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2009.
[22] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an

undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[23] C. R. Harris et al., “Array programming with NumPy,” Nature, vol.
585, no. 7825, pp. 357–362, Sept. 2020.

[24] D. Mulla, A. Sekely, and M. Beatty, “Evaluation of remote sensing
and targeted soil sampling for variable rate application of nitrogen.”
in International Conference on Precision Agriculture, Bloomington,
MN, USA, July 2000, pp. 1–15.

[25] USDA, National Agricultural Statistics Service, “Farms and land in
farms, 2019 summary,” February 2020. [Online]. Available: https://
www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0220.pdf


